230 V AC Nennspannung: Spannungsbereich: 187 - 265 V AC

Nennfrequenz: 50 Hz \pm 5 % / 60 Hz \pm 5 % 100 % ED bei Tu = 35 ℃ 50 % ED in 3 min bei Tu = 60 ℃ Einschaltdauer:

Stromaufnahme primär: \leq 0,25 A eff.

 \leq 0,25 A eff. bei U_N = 230 V AC \pm 2 % / 50 Hz und Sekundärlast R = 2 x 100 kOhm

Sekundärstrom: \geq 17 mA eff

bei $U_N = 230 \text{ V AC} \pm 2 \% / 50 \text{ Hz}$ und Sekundärlast R = 2 x 100 kOhm

 ≥ 40 mA eff bei $U_{\text{N}} = 230$ V AC $\pm\,2$ % / 50 Hz und Sekundärlast R = 2 kOhm

 $U_{sek.}$ = 2 x 7,5 kV \pm 2 kV bei Last R = ∞ $U_{sek.}$ = 2 x 9 kV \pm 2 kV bei Last R = ∞ + 50 pF Sekundärspannung:

Funkenenergie 2-polig: $E_{\text{F(RT)}} \ge 500 \text{ mJ}$ bei $U_{\text{N}} = 230 \text{ V AC} \pm 2 \% / 50 \text{ Hz}$

Ableitstrom: ≤ 5 mA nach DIN EN 50 165

bei $U_N = 230 \text{ V AC} \pm 2 \% / 50 \text{ Hz}$ und Sekundärlast R = 2 x 100 kOhm

Sekundärspannung:

$$\begin{split} &U_{\text{sek.}} = 2 \text{ x 7,5 kV} \pm 2 \text{ kV bei Last R} = \infty \\ &U_{\text{sek.}} = 2 \text{ x 9 kV} \pm 2 \text{ kV bei Last R} = \infty + 50 \text{ pF} \end{split}$$

 $E_{\text{\tiny F(RT)}}{\geq}\,500~\text{mJ}$ bei $U_{\text{\tiny N}}=230~\text{V}$ AC $\pm\,2~\%$ / 50~HzFunkenenergie 2-polig: Ableitstrom:

 ≤ 5 mA nach DIN EN 50 165 bei $U_{\text{N}}=230$ V AC $\pm\,2$ % / 50 Hz und Sekundärlast R = 2 x 100 kOhm